

OHIOERC BLOCKCHAIN COMPARISONS

This document provides various comparisons that can be used when determining whether Blockchain technology might be a good fit for a particular project, or, whether existing database technology will serve the purpose. It contains the following comparisons:

- Blockchain Advantages v. Disadvantages
- Blockchain versus Database
- Public v. Private v. Federated Blockchains

Blockchain features and functionalities mentioned throughout this document are explained in more detail in the OhioERC companion document, <u>Blockchain Basics: Introduction to</u> <u>Blockchain Concepts</u>.

DEFINITIONS

Blockchain: A consensus digital ledger comprised of unchangeable, digitally recorded data in packages called blocks. Each block is 'chained' to the next block using a cryptographic signature. This allows blockchains to act like a ledger, which can be shared with and accessed by anyone with the appropriate permissions. Blockchains are maintained across multiple computers, or nodes, that are linked in a peer-to-peer network.	Database: An organized collection of structured data, typically stored electronically, and controlled by an administrator. Data in databases can be accessed, managed, modified, updated, controlled, queried, and organized.
---	---

BLOCKCHAIN ADVANTAGES V. DISADVANTAGES (BY FEATURE)

Advantages	DISADVANTAGES				
Immutability					
Less risk of fraud	Incorrectly entered data cannot be fixed				
Transactions are irreversible – each change is a separate transaction	Transactions are irreversible				
Audit trail	Records disposition cannot be applied				
Hackers have to compromise at least 51% of the nodes to be successful in altering data	Data privacy concerns since information cannot be deleted				
Trustle	essness				
Reduces number of parties involved in a transaction	Potential loss of jobs or need to retrain employees in industries that serve as 3 rd parties				
Does not require a trusted, single 3 rd party intermediary					
Removing 3 rd parties reduces costs of transactions					
Secur	ity				
Transaction not accepted and added to block until validated	Lacks confidentiality since anyone with a node can see the transactions				
Private Keys	If private key lost, information not recoverable (no "password reset")				
The more nodes that join the blockchain, the more secure it becomes	Private security keys could slow access to public records				
	Vulnerable to attacks if a single party gets control of a majority of nodes				
Distributed (not Centralized)					
No single point of failure (system not affected if one node goes offline)	Speed of transactions may slow as the chain gets larger since each node has a full replica of the data, which is never reduced				
Multiple copies exist	May become too large for a party to store, creating risk of losing nodes				
Transactions verifiable by a large peer-to-peer network	Energy inefficient – as storage requirements increase, the energy necessary to operate increases, as does environmental ramifications				
	Technology too new to demonstrate permanence or migration if necessary				

DATABASE V. BLOCKCHAIN

Database	Blockchain	
Reconciliation required	Consensus on data	
Add, delete, edit	Only add new transactions	
Rely on one or only a few servers, which leave it vulnerable to technical failure or cyber attack	Distributed across nodes, no single point of failure	
Single point of control. Administrators and designated users determine who has access and what level of access is assigned.	Decentralized control (public blockchains)	
Gateways & middlemen involved for external transactions	Peer-to-Peer relationship (removes middleman)	
Encryption is optional	Encryption is a given feature	
Actions can be taken on behalf of others	Authentication & authorization	
Backups must be provided for manually	Resiliency and availability increase with node count	
More scalable, faster speed of transactions	Slower speed of transaction (compared to a database) due to ever growing number of blocks and nodes for verification and consensus to run through	
Sufficient if everyone with access has authority to write or edit data	Useful if you can't trust everyone adding to the node	
<u>Create</u> , <u>Read</u> , <u>Update</u> , and <u>Delete</u> (CRUD) operations means that data can be updated or replaced	Only Read and Write operations available	
Able to be deleted per retention schedule	No ability to delete per retention schedule	
Public access. Compliance with public records law more feasible over time.	More difficult to provide public access ¹ , upon request and over time, due to private keys or potential of keys being lost.	
More seasoned technology may be easier to implement and maintain	May be harder to implement and maintain since it is new technology and may not be able to be integrated or "added on" to existing technology as easily.	

¹ The word "transparency" has a different meaning in reference to blockchain than in reference to public records. In the realm of public records, transparency refers to the availability of records, which lend insight into the organization. Whereas in blockchain, transparency refers to the openness, or control of, the technology process. The OhioERC feels that documents stating that blockchain aids in transparency is confusing, even contradictory, to public records use of the term. Therefore, while other documents may use the word transparent when discussing blockchain, the OhioERC has removed the word all together to avoid potential confusion.

PUBLIC V. PRIVATE V. FEDERATED BLOCKCHAIN

Public Blockchain: Anyone can	Private Blockchain: Participants	Federated/Consortium
read it or write to a public	need to have access	Blockchain: These blockchains
blockchain. All participants	permissions, and what they can	are private, but have
follow the blockchain protocol	do with the blockchain can also	participation from multiple
(rules) that have been pre-	be limited by permissions. A	organizations who all agree on
defined and built into the	single organization makes these	permission rules. Nodes are
structure.	decisions.	spread across the member
		organizations.

PUBLIC V. PRIVATE V. FEDERATED BLOCKCHAIN (CONTINUED)

Feature	Public Blockchain	Private Blockchain	Federated/Consortium Blockchain
Computational/validation time - Easter	Breekenam	V	
(i.e. cost-effective)			
Computational/validation time -	✓		
Slower			
Consensus protocol	✓	✓	\checkmark
Data redundancy - High	✓		
Data redundancy - Low		\checkmark	
Data redundancy - Mid-level			\checkmark
Immutability	✓	✓	\checkmark
Levels of access and operation - All	\checkmark		
participants have equal read/write			
authority			
Levels of access and operation -		✓	\checkmark
Different levels and functionality can			
be set			
Network of nodes - Decentralized,	\checkmark		
peer-to-peer			
Network of nodes - Governed by a		\checkmark	
single entity			
Network of nodes - Partially			\checkmark
decentralized, multiple permissioned			
organizations			
Permissions - Administrator needed to		\checkmark	\checkmark
join the network, identities known			
Permissions - Anyone can join the	\checkmark		
network, anonymous			
Privacy - Lack of privacy	✓		
Privacy - Permissioned access to		✓	\checkmark
data, increased privacy compliance			
Security - Increased security because			\checkmark
multiple entitles agree to rules and			
Create stronger consensus			
Security - Less secure because it is		v	
owned and controlled by a single			
Socurity Stronger due to lorger			
notwork more concensus (barder to	, v		
hetwork, more consensus (narder to			
Transactional cost - Higher			
Transactional cost - Higher	•	./	
Transactional cost - Mid-level		•	\checkmark

PUBLIC V. PRIVATE V. FEDERATED BLOCKCHAIN (VISUALIZED)

